Using Apache Lucene to Search Vector of Locally Aggregated Descriptors

نویسندگان

  • Giuseppe Amato
  • Paolo Bolettieri
  • Fabrizio Falchi
  • Claudio Gennaro
  • Lucia Vadicamo
چکیده

Surrogate Text Representation (STR) is a profitable solution to efficient similarity search on metric space using conventional text search engines, such as Apache Lucene. This technique is based on comparing the permutations of some reference objects in place of the original metric distance. However, the Achilles heel of STR approach is the need to reorder the result set of the search according to the metric distance. This forces to use a support database to store the original objects, which requires efficient random I/O on a fast secondary memory (such as flash-based storages). In this paper, we propose to extend the Surrogate Text Representation to specifically address a class of visual metric objects known as Vector of Locally Aggregated Descriptors (VLAD). This approach is based on representing the individual sub-vectors forming the VLAD vector with the STR, providing a finer representation of the vector and enabling us to get rid of the reordering phase. The experiments on a publicly available dataset show that the extended STR outperforms the baseline STR achieving satisfactory performance near to the one obtained with the original VLAD vectors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Scale Image Retrieval Using Vector of Locally Aggregated Descriptors

Vector of locally aggregated descriptors (VLAD) is a promising approach for addressing the problem of image search on a very large scale. This representation is proposed to overcome the quantization error problem faced in Bag-of-Words (BoW) representation. However, text search engines have not be used yet for indexing VLAD given that it is not a sparse vector of occurrence counts. For this reas...

متن کامل

Apache Lucene as Content-Based-Filtering Recommender System: 3 Lessons Learned

For the past few years, we used Apache Lucene as recommendation framework in our scholarly-literature recommender system of the reference-management software Docear. In this paper, we share three lessons learned from our work with Lucene. First, recommendations with relevance scores below 0.025 tend to have significantly lower click-through rates than recommendations with relevance scores above...

متن کامل

Distribution Entropy Boosted VLAD for Image Retrieval

Several recent works have shown that aggregating local descriptors to generate global image representation results in great efficiency for retrieval and classification tasks. The most popular method following this approach is VLAD (Vector of Locally Aggregated Descriptors). We present a novel image presentation called Distribution Entropy Boosted VLAD (EVLAD), which extends the original vector ...

متن کامل

Human Action Recognition using Improved Vector of Locally Aggregated Descriptors

Recently, two high-dimensional encoding techniques for human action recognition, namely, Fisher vector (FV) and vector of locally aggregated descriptors (VLAD), are widely employed. In this study, a new human action recognition approach using improved VLAD with localized soft assignment (LSA) and second-order statistics is proposed. When encoding videos into VLAD, instead of considering only th...

متن کامل

Efficient image signatures and similarities using tensor products of local descriptors

In this paper, we introduce a novel image signature effective in both image retrieval and image classification. Our approach is based on the aggregation of tensor products of discriminant local features, named VLAT (vector of locally aggregated tensors). We also introduce techniques for the packing and the fast comparison of VLATs. We present connections between VLAT and methods like kernel on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016